
DISCLAIMER

Everything in this document shall not, under any circumstances, hold any legal liability
whatsoever. Any usage of the data and information in this document shall be solely on the
responsibility of the user. This document user has to take written consent from the author.

MAC ADDRESS
A MAC (Media Access Control) address is a unique identifier assigned to a network interface card (NIC) at the
hardware level. It is a 48-bit (6-byte) address that is globally unique and used for identifying devices on a
local network.

The MAC address is stored in the network interface's hardware itself. It is typically programmed into the NIC
during the manufacturing process and is usually stored in non-volatile memory, such as an EEPROM
(Electrically Erasable Programmable Read-Only Memory), which retains the address even when the device is
powered off.

The MAC address is associated with the specific network interface and remains unchanged unless it is modified
through explicit configuration or MAC address spoofing. Every network interface, whether it's an Ethernet card,
wireless adapter, or other types of network interfaces, has its own unique MAC address.

When devices communicate on a local network, they use MAC addresses to address and route network packets
at the data link layer of the networking protocol stack. MAC addresses are used by Ethernet and Wi-Fi protocols
to ensure that network packets are delivered to the correct device within the local network segment.

It's worth noting that the MAC address is separate from the IP address, which is used for network communication
at the network layer (Layer 3) of the protocol stack. The MAC address is specific to the local network and is not
routable over the internet, while IP addresses are used for global network communication.

In the Linux network subsystem, the MAC address for a net_device is typically obtained through the following
steps and kernel APIs:

1. Initialization: During the initialization of a network device, the net_device structure is allocated and
initialized. This structure contains a field called dev_addr, which represents the MAC address of the
device.

2. Device driver configuration: The device driver for the network device is responsible for configuring the
MAC address. It can set the MAC address explicitly or use default values.

Page no : 1 - 7

© MotionZen Services MotionZen Helping Hands Documents Email: info@motionzen.com

m
otionzen

mailto:info@motionzen.com

3. Setting the MAC address: The device driver can set the MAC address using the
dev_set_mac_address() function. This function is typically called during the initialization process or
when the MAC address needs to be changed.

4. Persistent MAC address: If the network device has a persistent MAC address stored in non-volatile
memory, the device driver can retrieve it and set it in the dev_addr field using the memcpy() function
or similar methods.

5. Random MAC address generation: If a persistent MAC address is not available, the kernel can generate a
random MAC address. The eth_hw_addr_random() function is used to generate a random MAC
address and set it in the dev_addr field.

6. MAC address spoofing: In certain cases, the user or an application may want to spoof the MAC address
of a network device. This can be achieved by using the dev_set_mac_address() function to set a
custom MAC address in the dev_addr field.

To retrieve the MAC address from a net_device, you can use the following methods and kernel APIs:

1. Within the kernel: If you are writing kernel code, you can access the MAC address directly from the
net_device structure. The dev_addr field contains the MAC address in binary form.

2. IOCTL: The SIOCGIFHWADDR ioctl command can be used to retrieve the MAC address of a network device
from user space. This ioctl command is typically used with the ioctl() function to get the MAC address as
a string.

3. Netlink sockets: Netlink sockets provide a communication channel between user space and the kernel.
You can use the NETLINK_ROUTE family of netlink sockets and send a RTM_GETLINK message to
retrieve the MAC address of a network device.

These are some of the common methods and kernel APIs used to obtain the MAC address of a net_device in the
Linux network subsystem. The specific implementation details may vary depending on the kernel version and the
device driver being used.

To read the MAC address from a NIC device in Linux, you can use the following kernel APIs and functions:

1. struct net_device: The net_device structure represents a network device and contains the MAC address
information. It is defined in the linux/netdevice.h header file.

2. dev_get_by_name(): This function retrieves a net_device structure based on the device name. It
takes the device name as a parameter and returns a pointer to the net_device structure if found, or
NULL otherwise. It is defined in the linux/netdevice.h header file.

3. netdev_info() or netdev_info_once(): These functions are used to print information about a network
device, including its MAC address. You can pass the net_device structure to these functions to print the
MAC address to the system logs. They are defined in the linux/netdevice.h header file.

Page no : 2 - 7

© MotionZen Services MotionZen Helping Hands Documents Email: info@motionzen.com

m
otionzen

mailto:info@motionzen.com

Here's an example code snippet that demonstrates how to read and print the MAC address of a NIC device:

Linux Kernel Module:
Example program :

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/version.h>
#include <linux/netdevice.h>
#include <linux/kernel.h>

void read_mac_address(const char* device_name) {
 struct net_device* dev = dev_get_by_name(&init_net, device_name);

 if (dev) {
 netdev_info(dev, "MAC Address: %pM\n", dev->dev_addr);
 // Alternatively, you can use netdev_info_once() for one-time printing:
 // netdev_info_once(dev, "MAC Address: %pM\n", dev->dev_addr);
 } else {
 printk(KERN_ERR "Device '%s' not found\n", device_name);
 }
}

static int __init start(void)
{

printk(KERN_DEBUG "Module to read MAC address \n");

read_mac_address("wlp2s0");
return 0;

}

static void __exit stop(void)
{

printk(KERN_INFO "Good bye driver\n");
}

module_init(start);
module_exit(stop);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Sateesh Kumar G");

Compile and run :
$ qc read_MAC_address
Delete Makefile
Createing Makefile
Make file created............................
Calling make
make -C /lib/modules/5.15.87/build/ M=/home/skg/SSD240G/23-Linux/LDD/progs_ldd/01.Modules modules
make[1]: Entering directory '/media/skg/SATASSD240G/src/linux-5.15.87'
 CC [M] /home/skg/SSD240G/23-Linux/LDD/progs_ldd/01.Modules/read_MAC_address.o
 MODPOST /home/skg/SSD240G/23-Linux/LDD/progs_ldd/01.Modules/Module.symvers
 CC [M] /home/skg/SSD240G/23-Linux/LDD/progs_ldd/01.Modules/read_MAC_address.mod.o
 LD [M] /home/skg/SSD240G/23-Linux/LDD/progs_ldd/01.Modules/read_MAC_address.ko
make[1]: Leaving directory '/media/skg/SATASSD240G/src/linux-5.15.87'
Now check .ko file
--
$ sudo insmod read_MAC_address.ko
$ dmesg
Module to read MAC address
iwlwifi 0000:02:00.0 wlp2s0: MAC Address: b8:8a:60:b0:9f:14

Page no : 3 - 7

© MotionZen Services MotionZen Helping Hands Documents Email: info@motionzen.com

m
otionzen

mailto:info@motionzen.com

In the above example, the read_mac_address() function takes the name of the network device as input. It
uses the dev_get_by_name() function to retrieve the corresponding net_device structure. If the device is
found, it prints the MAC address using the netdev_info() or netdev_info_once() functions, which format the
MAC address as a string.

Please note that this code assumes that you are developing a kernel module or code that runs in the kernel
context. If you are developing a user-space application, you would need to use different APIs, such as the
ioctl() system call with the SIOCGIFHWADDR command, to read the MAC address.

Application Program: using ioctl call
Here's an example C program that can be used in user space to print the MAC address of a network interface:

Example program:

#include <stdio.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <net/if.h>
#include <stdlib.h>
#include <unistd.h>

void print_mac_address(const char* interface_name) {
 struct ifreq ifr;
 int sockfd;

 // Create a socket
 sockfd = socket(AF_INET, SOCK_DGRAM, 0);
 if (sockfd == -1) {
 perror("socket");
 return;
 }

 // Set interface name
 strncpy(ifr.ifr_name, interface_name, IFNAMSIZ - 1);

 // Get MAC address
 if (ioctl(sockfd, SIOCGIFHWADDR, &ifr) == -1) {
 perror("ioctl");
 close(sockfd);
 return;
 }

 // Print MAC address
 unsigned char* mac = (unsigned char*)ifr.ifr_hwaddr.sa_data;
 printf("MAC Address: %02X:%02X:%02X:%02X:%02X:%02X\n",
 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);

 // Close socket
 close(sockfd);
}

int main() {
 const char* interface_name = "wlp2s0"; // Replace with your interface name
 print_mac_address(interface_name);

 return 0;
}

Compile and run :
$ gcc read_MAC_Application.c
$./a.out
MAC Address: B8:8A:60:B0:9F:14
$

Page no : 4 - 7

© MotionZen Services MotionZen Helping Hands Documents Email: info@motionzen.com

m
otionzen

mailto:info@motionzen.com

In this program, the print_mac_address() function takes the name of the network interface as input. It creates
a socket using socket(), sets the interface name in the ifr structure, and retrieves the MAC address using the
ioctl() system call with the SIOCGIFHWADDR command.

The MAC address is then printed by accessing the ifr_hwaddr.sa_data field of the ifr structure. Finally, the
socket is closed using close().

Note: Make sure to replace "eth0" with the name of the network interface you want to retrieve the MAC address
from. You can find the interface name using tools like ifconfig or ip addr show.

Compile and run the program, and it should display the MAC address of the specified network interface.

Application Program: using netlink call
C program that uses Netlink to access the MAC address of a network interface in Linux:

Example program using Netlink :

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <linux/netlink.h>
#include <linux/rtnetlink.h>
#include <linux/if.h>

#define MAX_PAYLOAD 4096

struct nl_req {
 struct nlmsghdr nl_hdr;
 struct ifinfomsg if_info;
};

int main() {
 int sockfd;
 struct sockaddr_nl sa;
 struct nl_req req;
 struct msghdr msg;
 struct iovec iov;
 char buffer[MAX_PAYLOAD];
 ssize_t len;

 // Create netlink socket
 sockfd = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
 if (sockfd < 0) {
 perror("socket");
 exit(EXIT_FAILURE);
 }

 memset(&sa, 0, sizeof(sa));
 sa.nl_family = AF_NETLINK;
 sa.nl_groups = RTMGRP_LINK;

 // Bind the socket

Page no : 5 - 7

© MotionZen Services MotionZen Helping Hands Documents Email: info@motionzen.com

m
otionzen

mailto:info@motionzen.com

 if (bind(sockfd, (struct sockaddr *)&sa, sizeof(sa)) < 0) {
 perror("bind");
 exit(EXIT_FAILURE);
 }

 memset(&req, 0, sizeof(req));
 req.nl_hdr.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifinfomsg));
 req.nl_hdr.nlmsg_type = RTM_GETLINK;
 req.nl_hdr.nlmsg_flags = NLM_F_REQUEST | NLM_F_DUMP;
 req.if_info.ifi_family = AF_UNSPEC;

 iov.iov_base = &req;
 iov.iov_len = req.nl_hdr.nlmsg_len;

 memset(&msg, 0, sizeof(msg));
 msg.msg_iov = &iov;
 msg.msg_iovlen = 1;

 // Send the request
 if (sendmsg(sockfd, &msg, 0) < 0) {
 perror("sendmsg");
 exit(EXIT_FAILURE);
 }

 // Receive the response
 memset(buffer, 0, sizeof(buffer));
 iov.iov_base = buffer;
 iov.iov_len = sizeof(buffer);
 msg.msg_iov = &iov;
 msg.msg_iovlen = 1;

 len = recvmsg(sockfd, &msg, 0);
 if (len < 0) {
 perror("recvmsg");
 exit(EXIT_FAILURE);
 }

 // Parse the response
 struct nlmsghdr *nl_hdr;
 for (nl_hdr = (struct nlmsghdr *)buffer; NLMSG_OK(nl_hdr, len); nl_hdr =
NLMSG_NEXT(nl_hdr, len)) {
 if (nl_hdr->nlmsg_type == NLMSG_DONE) {
 break;
 }

 if (nl_hdr->nlmsg_type == RTM_NEWLINK) {
 struct ifinfomsg *if_info = (struct ifinfomsg *)NLMSG_DATA(nl_hdr);
 struct rtattr *attr = IFLA_RTA(if_info);
 int attr_len = nl_hdr->nlmsg_len - NLMSG_LENGTH(sizeof(struct ifinfomsg));

 while (RTA_OK(attr, attr_len)) {
 if (attr->rta_type == IFLA_ADDRESS) {
 char mac_addr[IFHWADDRLEN];
 memcpy(mac_addr, RTA_DATA(attr), IFHWADDRLEN);
 printf("MAC Address: ");
 for (int i = 0; i < IFHWADDRLEN; i++) {
 printf("%02X:", mac_addr[i]);

Page no : 6 - 7

© MotionZen Services MotionZen Helping Hands Documents Email: info@motionzen.com

m
otionzen

mailto:info@motionzen.com

 }
 printf("\n");
 }
 attr = RTA_NEXT(attr, attr_len);
 }
 }
 }

 close(sockfd);

 return 0;
}

Compile and run program:

$ gcc read_MAC_using_netlink.c
$./a.out
MAC Address: 00:00:00:00:00:00:
MAC Address: 48:FFFFFFBA:4E:FFFFFF8B:FFFFFFDC:48:

This program creates a Netlink socket, sends a request to retrieve the network interface information, and then
parses the response to extract the MAC address. The MAC address is printed in the format
XX:XX:XX:XX:XX:XX.

AUTHOR

SATEESH KUMAR G

Page no : 7 - 7

© MotionZen Services MotionZen Helping Hands Documents Email: info@motionzen.com

m
otionzen

mailto:info@motionzen.com

