
DISCLAIMER

Everything in this document shall not, under any circumstances, hold any legal liability
whatsoever. Any usage of the data and information in this document shall be solely on the
responsibility of the user. This document user has to take written consent from the author.

What is reentrant and example
In the context of the Linux kernel, "reentrant" refers to code that can be safely interrupted and then resumed
without causing unexpected behavior or data corruption. Reentrant code is designed to handle multiple
simultaneous invocations, typically by using local variables or data structures that are not shared between
invocations.
The concept of reentrant code is particularly important in the kernel, as it is a multi-threaded environment
where multiple processes and interrupt handlers can run concurrently. Non-reentrant code could lead to race
conditions, data corruption, or other unpredictable outcomes when multiple invocations attempt to access
shared resources simultaneously.

To understand reentrant code better, let's consider an example. Suppose we have a kernel function that
calculates the factorial of a given number. A non-reentrant implementation might use a static variable to store
the intermediate result, like this:

int factorial(int n) {
 static int result = 1;

 if (n == 0 || n == 1)
 return result;

 result *= n;
 return factorial(n - 1);
}

In this non-reentrant implementation, the result variable is shared among all invocations of the factorial()
function. If two invocations of factorial() were running simultaneously, they would both read and modify the
same result variable, leading to incorrect results.
To make the code reentrant, we can modify it to use a local variable to store the intermediate result, like this:

Page no : 1 - 2

© MotionZen Services MotionZen Helping Hands Documents Email: info@motionzen.com

m
otionzen

mailto:info@motionzen.com

int factorial(int n) {
 int result = 1;

 if (n == 0 || n == 1)
 return result;

 result *= n;
 return factorial(n - 1);
}

In this reentrant implementation, each invocation of the factorial() function has its own independent result
variable. Therefore, multiple invocations can run concurrently without interfering with each other's
computations.
By designing code to be reentrant, the Linux kernel ensures that different processes, threads, or interrupt
handlers can safely call the same functions without causing conflicts or unexpected behavior. This is crucial for
maintaining the stability, reliability, and security of the operating system.

Page no : 2 - 2

© MotionZen Services MotionZen Helping Hands Documents Email: info@motionzen.com

m
otionzen

mailto:info@motionzen.com

